
The Principled Developer

 Gerardo Gonzalez |
 @fmizzell |

“The” Principle

➔ Principle: A rule or standard, especially of
good behavior

➔ Software: (...) and symbolic languages that
control the functioning of the hardware (...)

➔ Develop: To aid in the growth of;
strengthen.

“The” Principle | Definitions

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

➔ To strengthen communications between
humans and machines by improving our
common language(s)

“The” Principle | Mission Statement

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

➔ Are machines the only audience of our
communications?

➔ NO!!!: Our future self, other developers, the
DOMAIN experts, etc

“The” Principle | Anything Missing?

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

➔ To strengthen communications between
humans <-> machines by improving our
common language(s)

➔ Improve: Clear, Dense/Powerful,
Unambiguous, Simple/Accessible

“The” Principle | Improved Mission Statement

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

PHP and Drupal

➔ Close to the metal: Primitive data types
(string, integer, boolean, etc), operations, If
statements

➔ Beyond the metal: Variables, arrays, loops,
functions, classes, objects

PHP and Drupal | PHP

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

➔ Data in Drupal is represented by Entities. A
node is the type of entity used for content.
Content can have different structures.
Different types of nodes can be created
and are known as content types. Each
content type is characterized by which
fields it possesses

PHP and Drupal | Drupal

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

➔ Does the code match the idea?

PHP and Drupal | Drupal

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

class Node extends ContentEntityBase implements NodeInterface {
}

https://api.drupal.org/api/drupal/core%21modules%21node%21src%21Entity%21Node.php/class/Node/8.2.x
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Entity%21ContentEntityBase.php/class/ContentEntityBase/8.2.x
https://api.drupal.org/api/drupal/core%21modules%21node%21src%21NodeInterface.php/interface/NodeInterface/8.2.x

Software Design
Principles

➔ S: Single responsibility principle

➔ O: Open/Closed principle

➔ L: Liskov substitution principle

➔ I: Interface segregation principle

➔ D: Dependency Inversion principle

Software Design Principles | SOLID

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

➔ Every subclass/derived class should be
substitutable for their base/parent class

Software Design Principles | Liskov substitution principle

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

class Feline {

 public function meows() { return TRUE; }}

class Tiger extends Feline {

 public function meows() {

 return "ROOOOOAAAARRRR!!!"; }}

➔ A class should have one and only one
reason to change, meaning that a class
should have only one job

Software Design Principles | Single responsibility principle | 1

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

print "<p>Hello World!!!<\p>";

➔ A class should have one and only one
reason to change, meaning that a class
should have only one job

Software Design Principles | Single responsibility principle | 2

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

$outputter->output(

 $formatter->format("Hello World!!!")

);

➔ Objects or entities should be open for
extension, but closed for modification

➔ "Never Hack Core"

◆ hooks, events, plugins, DIC

Software Design Principles | Open/Closed principle

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

➔ A client should never be forced to
implement an interface that it doesn't use or
clients shouldn't be forced to depend on
methods they do not use.

Software Design Principles | Interface segregation principle | 1

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

interface CacheInterface {

 public function set($cid, $data);

 public function get($cid);

 public function expire($timestamp);

}

Software Design Principles | Interface segregation principle | 2

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

interface CacheInterface {

 public function set($cid, $data);

 public function get($cid);

}

interface ExpirableCacheInterface extends CacheInterface

{

 public function expire($timestamp);

}

Software Design Principles | Interface segregation principle | 3

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

➔ Entities must depend on abstractions not on
concretions. It states that the high level
module must not depend on the low level
module, but they should depend on
abstractions

Software Design Principles | Dependency inversion principle | 1

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

Software Design Principles | Dependency inversion principle | 2

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

➔ Engine -> Clutch

Software Design Principles | Dependency inversion principle | 3

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

class Engine {

 private $clutch;

 public function __construct() {

$this->clutch = new Clutch();

 }

}

➔ Engine -> ClutchInterface <- Clutch

Software Design Principles | Dependency inversion principle | 4

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

class Engine {

 private $clutch;

 public function __construct(ClutchInterface $clutch) {

$this->clutch = $clutch;

 }

}

What about improved
communications?

➔ Principles are useful

➔ "What-if" is the enemy of "what-is"

➔ Overengineering?

➔ But, isn’t a more principled system a better
system?

What about improved communications? | Recap

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

➔ You do not know the correct language
around a problem/solution until you do

➔ Abstractions inject complexity

➔ No abstractions are better than bad
abstractions

What about improved communications? | Problem

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

➔ Let the code express the idea

➔ Languages should evolve naturally

➔ The YAGNI principle

◆ You ain’t going to need it

What about improved communications? | Solution | 1

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

➔ “Domain/Knowledge Driven Refactoring”

◆ Agile, failing fast, lean development

➔ “Lots of Refactoring Means Lots of
Tests”

◆ Lock your intentions

What about improved communications? | Solution | 2

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

Conclusion

➔ Always improve communications by
developing a better languages

➔ SOLID is solid but YAGNI

➔ Let better languages evolve through
Domain/Knowledge Driven Refactoring

Conclusion

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

Open Discussion

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

Thank you.

DRUPAL GOVCON 2017 | THE PRINCIPLED DEVELOPER | GERARDO GONZALEZ | @FMIZZELL | @CIVICACTIONS

