AcCoula

Transitioning your
Drupal 8 Site to ES6

©2018 Acquia Inc. — Confidential and Proprietary

Who we are

Lindsey Kopacz Brian Reese
— Front End Developer with — Senior Developer with
Acquia Professional Acquia Professional
Services Services
— Passionate about — Front- and Back-end
Accessibility, JavaScript, developer, with a passion
pumping iron and good for good javascript and

craft beers. visual regression testing

©2018 Acquia Inc. — Confidential and Proprietary

Overview

— Defining Variables

— Arrow Functions

— Template Literals

— Promises

— Modules and Classes

©2018 Acquia Inc. — Confidential and Proprietary ACQU I C’

Defining Variables

Acauia

ES5 Scope and declaring variables

— Historically var only had 2 scoping capabilities: functional
scope and global scope

var pi = 3.14; // global scope

function calculateCircleArea (radius) {
// functional scope that only exists in the function
var area = pi * radius?;

}

— What happens when you want block scope?

©2018 Acquia Inc. — Confidential and Proprietary

Hoisting

— Hoisting is a JavaScript mechanism where variables are
moved to the top of their scope before code execution.

— What happens when you want block scope?
function compareNumbers (x, y) {
if (x > y) {
var ¢ = 2;

}
}

— var c becomes hoisted into the functional scope so ify >
X, ¢ wWill become undefined

©2018 Acquia Inc. — Confidential and Proprietary

Solving the Hoisting problem

— ES6 introduced two new ways to declare variables: 1let

and const

— let statement declares a block scope local variable,
optionally initializing it to a value.

— const is much like 1let scope, except that it defines a
constant that cannot change through reassignment, and
it can't be redeclared.

©2018 Acquia Inc. — Confidential and Proprietary

Using const

// define pi as a constant

const pi = 3.14;

// this will throw an error
// Uncaught TypeError: Assignment to constant variable.

pi = 3.1415;

AcQuid

©2018 Acquia Inc. — Confidential and Proprietary

Using let

let x = 1;
if (x === 1) {
let x = 2;

console.log(x); // expected output: 2

console.log(x); // expected output: 1

©2018 Acquia Inc. — Confidential and Proprietary ACQU IO

Arrow Functions

©2018 Acquia Inc. — Confidential and Proprietary ACQU IG

Functions (currently and pre-ES6)

— Functions are defined using a function keyword, optional

parameter(s), and curly braces
— Every new function defined its own this value

— (Can be used as constructors

Acauid

Arrow Functions

— Arrow functions now use “fat arrow” syntax

— Arrow functions do not have their own this value.

— Arrow functions have convenient shorthands depending
on how many lines of code are within the scope, how
many parameters there are, etc

©2018 Acquia Inc. — Confidential and Proprietary

ES5 old school functions - using this

const pets = {
names: ['Baron', 'Chief', 'Axel'],
owner: 'Jason',

description: function() {
return this.names.map (function (pet) {
return "“${this.owner} knows an awesome dog named ${pet}.’
});
}
}i
pets.description() ;

// returns [‘undefined knows an awesome dog named Baron’, ‘undefined knows
an awesome dog named Chief’, ‘undefined knows an awesome dog named Axel’]

Source: Medium Article ES5 functions vs. ES6 ‘fat arrow’ functions

©2018 Acquia Inc. — Confidential and Proprietary ACQU IG

https://medium.com/@thejasonfile/es5-functions-vs-es6-fat-arrow-functions-864033baa1a

Why does it return undefined?

this is referring to the function that called it which
doesn’t know what ‘owner’ is.

Because ES5 functions has its own this, it's looking
within the function

What needs to happen is that ‘this’ needs to refer to the
pets object, not the function.

In ES5 there are a couple of ways around it (bind,
creating a variable that is equal to this, pass the this
value to the function). Let’s focus on ES6 though.

Source: Medium Article ES5 functions vs. ES6 ‘fat arrow’ functions

©2018 Acquia Inc. — Confidential and Proprietary

https://medium.com/@thejasonfile/es5-functions-vs-es6-fat-arrow-functions-864033baa1a

How to fix this with arrow functions

— Arrow functions don’t have their own or don’t change the
context of this.

— When using arrow functions, the this value of the enclosing
lexical context is used (IE this from its enclosing scope)

const pets = {
names: ['Baron', 'Chief', 'Axel'],
owner: 'Jason',
description: function() {
return this.names.map ((pet) => {

return "${this.owner} knows an awesome dog named ${pet}.’

})
}
};

Source: Medium Article ES5 functions vs. ES6 ‘fat arrow’ functions

©2018 Acquia Inc. — Confidential and Proprietary

https://medium.com/@thejasonfile/es5-functions-vs-es6-fat-arrow-functions-864033baa1a

Arrow Functions syntax

— You define a function using a variable. You put the
parameters in parentheses per usual, then use a fat
arrow to continue to define your scope

— If you only have one parameter, but can omit the
parentheses.

— If you only have one line of code that you’re returning
you can omit the curly braces and the return keyword.

©2018 Acquia Inc. — Confidential and Proprietary

Using arrow syntax

const double = (x) => {

return x * 2;

// Below is the same exact function.
const double = x => {

return x * 2;

// Below is ALSO the same exact function.

const double = x => x * 2;

©2018 Acquia Inc. — Confidential and Proprietary ACQU IG

Template Literals

Acauia

Template Literals

— Template literals are string literals allowing embedded
expressions.

— They are defined with backticks "Some String

— You can interject variables, math, object properties, etc
with the following syntax: $ { someVar}

— Theresult: "S${name} is ${age} years old

©2018 Acquia Inc. — Confidential and Proprietary

Using template literals

const person = {
name: 'Lindsey',
age: 28,

hometown: 'Frederick, MD',

// creating a string in ES5 and below

var esS5about = person.name + ' is ' + person.age + ' years old and is from'
+ person.hometown + '.'

// creating a string in ES6

const aboutPerson = "“${person.name} is ${person.age} years old and is from
$ {person.hometown}."

©2018 Acquia Inc. — Confidential and Proprietary ACQU I G

Promises

©2018 Acquia Inc. — Confidential and Proprietary ACQU IG

02018 Acquia Inc. — Confidential and Proprietary

What is a promise?

— An object which represents the eventual completion (or
failure) of an asynchronous operation, and its resulting
value.

— This lets asynchronous methods return values like
synchronous methods: instead of immediately returning the
final value, the asynchronous method returns a promise to
supply the value at some point in the future.

— You can chain your promises using . then () and
.catch () which also return promises.

©2018 Acquia Inc. — Confidential and Proprietary

Using promises (a real-world example)

- Axios is a Promise-based HTTP client for JavaScript
which can be used in your front-end application and in
your Node.js backend.

axios.get('https://api.github.com/users/darkcody)
.then (response => console.log(response.data.name))

.catch (error => console.log(error)) ;

©2018 Acquia Inc. — Confidential and Proprietary ACQU I C’

Creating your own promises

const x = 10;
const promise = new Promise ((resolve, reject) => {

if (x < 15) {

axios.get('https://api.github.com/users/lkopacz') .then((content) => {

Content.title = ‘My custom title’;

resolve (content) ;

b
}
else {
reject('not wvalid');

}
})

promise. then (result => console.log('It worked'));

promise.catch (error => console.log('It didn’t work'));

Acauid

©2018 Acquia Inc. — Confidential and Proprietary

https://api.github.com/users/lkopacz

Async/Await

— A syntax for working with promises that reads more like
synchronous code

— Async functions are functions that return a promise

— Within an async function, code execution can be paused
using the await keyword. Code execution continues with
the resolved promise.

- Async/await is not an official part of ES6 but its coming!
It can be used today using the Babel transpiler

©2018 Acquia Inc. — Confidential and Proprietary

Async/Await examples

Using Promises:

function doThingsInSequence () {
return doThingl ()
.then ((resultl) => {
return doThing2 (resultl) ;
h
.then ((result2) => {
return doThing3 (result2);
h
.then ((result3) => {
return doThing4 (result3) ;

})

©2018 Acquia Inc. — Confidential and Proprietary

Using Async/Await:

async function doThingsInSequence () {

let resultl = await doThingl() ;
let result2 = await doThing2() ;
let result3 = await doThing3();

return await doThing4 () ;

Acauid

Async/Await examples

- The “await” keyword only works inside of a function
defined with “async”

async function getVisitorLocation() { ... }

// Will throw an exception

await getVisitorLocation ()

// Will also throw an exception
function myRegularFunction() {
let location = await getVisitorLocation() ;

}

©2018 Acquia Inc. — Confidential and Proprietary ACQU I G

Async/Await in 7 seconds

https://twitter.com/manekinekko/status/855824609299636230

©2018 Acquia Inc. — Confidential and Proprietary ACQU IG

https://twitter.com/manekinekko/status/855824609299636230

ES6 Modules and Classes

©2018 Acquia Inc. — Confidential and Proprietary ACQU IG

What is an ES6 Class

— At its most basic level, the class keyword in ES6 is
equivalent to a constructor function definition that
conforms to prototype-based inheritance.

— The class keyword is just a special function and
exhibits expected function behavior.

— Moving towards the object oriented model, but note that
it is primarily syntactical sugar for JavaScript's existing
prototype-based inheritance and not yet object oriented.

©2018 Acquia Inc. — Confidential and Proprietary

ES5 vs. ES6 constructor syntax

// ES6 Class

// ES5 Constructor Function
class Animal {

function Animal (type, name, sound) {
this.type = type; consFructor(type, name, sound) ({
] this.type = type;
this.name = name; .
i this.name = name;
this.sound = sound; this.sound = sound:

// Works for both ES5 and ES6!

const frog = new Animal ('frog', 'George', 'ribbit');

Source: Medium Article ES6 Class vs Object.prototype

©2018 Acquia Inc. — Confidential and Proprietary

https://medium.com/@ericschwartz7/oo-javascript-es6-class-vs-object-prototype-5debfbf8296e

What is Prototypal Inheritance?

function Person(first, last, age) {
this.name = {
first,
last
}i
this.age = age;
}i
Person.prototype.greeting = function() {
console.log('Hi! I'm ${this.name.first}.’);
}i
const Lindsey = new Person('Lindsey', 'Kopacz',6 28);
Lindsey.greeting(); // logs 'Hi! I'm Lindsey.' to the console

Acauid

©2018 Acquia Inc. — Confidential and Proprietary

What is Prototypal Inheritance?

— All functions get initialized with a prototype object.

— By placing greeting on Person.prototype, we made it
available to all instances of Person

— In actuality, there’s no Lindsey.greeting property.
Instead, Lindsey has access to the greeting() method on
Person.prototype because it’s an instance of Person.

— Ifllogged “Lindsey” to the console, | would not see the
greeting in my object.

— This is commonly referred to as the prototype chain.

ES6 prototypal inheritance

— ES6 gives us the ability to create a class that inherits
properties from a parent super class.

— It uses the extends keyword.

— Let’s take our frog example, and this time we’ll create it
as a class.

Source: Medium Article ES6 Class vs Object.prototype

©2018 Acquia Inc. — Confidential and Proprietary

https://medium.com/@ericschwartz7/oo-javascript-es6-class-vs-object-prototype-5debfbf8296e

ES6 prototypal inheritance

class Frog extends Animal {
constructor (name) {

super ('frog', name, 'ribbit');

}

const george = new Frog('George') ;

Animal.prototype.makeSound = function () ({
console.log(The ${this.type} goes ${this.sound}!’);

}

george .makeSound(); // Logs 'The frog goes ribbit!' to the console

©2018 Acquia Inc. — Confidential and Proprietary ACQU IG

What is a JavaScript Module?

— At its most basic level, modules refer to small units of
independent, reusable code.

— Modules can be imported and exported.

— Use import and export keyword to take full
advantage of modular JavaScript

— There is a problem though: importing files into
applications wasn’t built into browsers - so we need a
way to bundle the code so that we can render it.

— One Solution: Use Webpack!

What is Webpack?

— Webpack is a module bundler.

— The bundling process begins from user-defined entries.

— Entries themselves are modules and can point to other
modules through imports.

— Plays nicely with babel - which compiles ES6 code into
ESS friendly code for browser compatibility.

Other Things to Learn

Rest Parameters
Spread operators
Destructuring Arrays and Objects

Confidential and Proprietary

Acauid

Drupal Example

Acauia

Resources

Medium Blog Post: ES6 Classes vs Object
Inheritance

Medium Blog Post: ES5 functions vs. ES6
‘fat arrow’ functions

In-depth dive on Async/Await: Truly
understanding Async/Await
Understanding JavaScript Modules

A Detailed Introduction to Webpack
Using Babel and Webpack

Prototypal Inheritance in JavaScript

ES6 Drupal Example

https://qithub.com/darkcody/weather-module-example

©2018 Acquia Inc. — Confidential and Proprietary

MDN: Using Promises
MDN: Using Fetch
MDN: Template Literals

MDN: let declaration
MDN: const declaration

MDN: Destructuring
Assignment

MDN: Rest parameters
MDN: Spread Syntax

ACQuUId

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://medium.com/@ericschwartz7/oo-javascript-es6-class-vs-object-prototype-5debfbf8296e
https://medium.com/@ericschwartz7/oo-javascript-es6-class-vs-object-prototype-5debfbf8296e
https://medium.com/@thejasonfile/es5-functions-vs-es6-fat-arrow-functions-864033baa1a
https://medium.com/@thejasonfile/es5-functions-vs-es6-fat-arrow-functions-864033baa1a
https://medium.com/@rafaelvidaurre/truly-understanding-async-await-491dd580500e
https://medium.com/@rafaelvidaurre/truly-understanding-async-await-491dd580500e
https://spring.io/understanding/javascript-modules
https://www.smashingmagazine.com/2017/02/a-detailed-introduction-to-webpack/
http://ccoenraets.github.io/es6-tutorial-data/babel-webpack/
https://medium.com/@kevincennis/prototypal-inheritance-781bccc97edb
https://github.com/darkcody/weather-module-example

