
©2018 Acquia Inc. — Confidential and Proprietary

Transitioning your
Drupal 8 Site to ES6

Brian Reese & Lindsey Kopacz

©2018 Acquia Inc. — Confidential and Proprietary

Who we are

Brian Reese
– Senior Developer with

Acquia Professional
Services

– Front- and Back-end
developer, with a passion
for good javascript and
visual regression testing

Lindsey Kopacz
– Front End Developer with

Acquia Professional
Services

– Passionate about
Accessibility, JavaScript,
pumping iron and good
craft beers.

©2018 Acquia Inc. — Confidential and Proprietary

Overview
– Defining Variables
– Arrow Functions
– Template Literals
– Promises
– Modules and Classes

©2018 Acquia Inc. — Confidential and Proprietary

Defining Variables

©2018 Acquia Inc. — Confidential and Proprietary

ES5 Scope and declaring variables
– Historically var only had 2 scoping capabilities: functional

scope and global scope

– What happens when you want block scope?

var pi = 3.14; // global scope
function calculateCircleArea(radius) {
 // functional scope that only exists in the function
 var area = pi * radius²;
}

©2018 Acquia Inc. — Confidential and Proprietary

Hoisting
– Hoisting is a JavaScript mechanism where variables are

moved to the top of their scope before code execution.
– What happens when you want block scope?

– var c becomes hoisted into the functional scope so if y >
x, c will become undefined

function compareNumbers(x, y) {
 if (x > y) {
 var c = 2;
 }
}

©2018 Acquia Inc. — Confidential and Proprietary

Solving the Hoisting problem
– ES6 introduced two new ways to declare variables: let

and const
– let statement declares a block scope local variable,

optionally initializing it to a value.
– const is much like let scope, except that it defines a

constant that cannot change through reassignment, and
it can't be redeclared.

©2018 Acquia Inc. — Confidential and Proprietary

Using const
// define pi as a constant
const pi = 3.14;

// this will throw an error
// Uncaught TypeError: Assignment to constant variable.
pi = 3.1415;

©2018 Acquia Inc. — Confidential and Proprietary

Using let
let x = 1;

if (x === 1) {
 let x = 2;

 console.log(x); // expected output: 2
}

console.log(x); // expected output: 1

©2018 Acquia Inc. — Confidential and Proprietary

Arrow Functions

©2018 Acquia Inc. — Confidential and Proprietary

Functions (currently and pre-ES6)

– Functions are defined using a function keyword, optional
parameter(s), and curly braces

– Every new function defined its own this value
– Can be used as constructors

©2018 Acquia Inc. — Confidential and Proprietary

Arrow Functions

– Arrow functions now use “fat arrow” syntax
– Arrow functions do not have their own this value.
– Arrow functions have convenient shorthands depending

on how many lines of code are within the scope, how
many parameters there are, etc

©2018 Acquia Inc. — Confidential and Proprietary

ES5 old school functions - using this
const pets = {

 names: ['Baron', 'Chief', 'Axel'],

 owner: 'Jason',

 description: function(){

 return this.names.map(function(pet){

 return `${this.owner} knows an awesome dog named ${pet}.`

 });

 }

};

pets.description();

// returns [‘undefined knows an awesome dog named Baron’, ‘undefined knows
an awesome dog named Chief’, ‘undefined knows an awesome dog named Axel’]

Source: Medium Article ES5 functions vs. ES6 ‘fat arrow’ functions

https://medium.com/@thejasonfile/es5-functions-vs-es6-fat-arrow-functions-864033baa1a

©2018 Acquia Inc. — Confidential and Proprietary

Why does it return undefined?
– this is referring to the function that called it which

doesn’t know what ‘owner’ is.
– Because ES5 functions has its own this, it’s looking

within the function
– What needs to happen is that ‘this’ needs to refer to the

pets object, not the function.
– In ES5 there are a couple of ways around it (bind,

creating a variable that is equal to this, pass the this
value to the function). Let’s focus on ES6 though.

Source: Medium Article ES5 functions vs. ES6 ‘fat arrow’ functions

https://medium.com/@thejasonfile/es5-functions-vs-es6-fat-arrow-functions-864033baa1a

©2018 Acquia Inc. — Confidential and Proprietary

How to fix this with arrow functions
– Arrow functions don’t have their own or don’t change the

context of this.
– When using arrow functions, the this value of the enclosing

lexical context is used (IE this from its enclosing scope)
const pets = {
 names: ['Baron', 'Chief', 'Axel'],
 owner: 'Jason',
 description: function(){
 return this.names.map((pet) => {
 return `${this.owner} knows an awesome dog named ${pet}.`
 });
 }
};

Source: Medium Article ES5 functions vs. ES6 ‘fat arrow’ functions

https://medium.com/@thejasonfile/es5-functions-vs-es6-fat-arrow-functions-864033baa1a

©2018 Acquia Inc. — Confidential and Proprietary

Arrow Functions syntax

– You define a function using a variable. You put the
parameters in parentheses per usual, then use a fat
arrow to continue to define your scope

– If you only have one parameter, but can omit the
parentheses.

– If you only have one line of code that you’re returning
you can omit the curly braces and the return keyword.

©2018 Acquia Inc. — Confidential and Proprietary

Using arrow syntax
const double = (x) => {

 return x * 2;

}

// Below is the same exact function.

const double = x => {

 return x * 2;

}

// Below is ALSO the same exact function.

const double = x => x * 2;

©2018 Acquia Inc. — Confidential and Proprietary

Template Literals

©2018 Acquia Inc. — Confidential and Proprietary

Template Literals

– Template literals are string literals allowing embedded
expressions.

– They are defined with backticks `Some String`
– You can interject variables, math, object properties, etc

with the following syntax: ${someVar}
– The result: `${name} is ${age} years old`

©2018 Acquia Inc. — Confidential and Proprietary

Using template literals
const person = {

name: 'Lindsey',

age: 28,

hometown: 'Frederick, MD',

}

// creating a string in ES5 and below

var es5about = person.name + ' is ' + person.age + ' years old and is from'
+ person.hometown + '.'

// creating a string in ES6

const aboutPerson = `${person.name} is ${person.age} years old and is from
${person.hometown}.`

©2018 Acquia Inc. — Confidential and Proprietary

Promises

©2018 Acquia Inc. — Confidential and Proprietary

©2018 Acquia Inc. — Confidential and Proprietary

– An object which represents the eventual completion (or
failure) of an asynchronous operation, and its resulting
value.

– This lets asynchronous methods return values like
synchronous methods: instead of immediately returning the
final value, the asynchronous method returns a promise to
supply the value at some point in the future.

– You can chain your promises using .then() and
.catch() which also return promises.

What is a promise?

©2018 Acquia Inc. — Confidential and Proprietary

– Axios is a Promise-based HTTP client for JavaScript
which can be used in your front-end application and in
your Node.js backend.

axios.get('https://api.github.com/users/darkcody)

 .then(response => console.log(response.data.name))

 .catch(error => console.log(error));

Using promises (a real-world example)

©2018 Acquia Inc. — Confidential and Proprietary

const x = 10;

const promise = new Promise((resolve, reject) => {

 if (x < 15) {

axios.get('https://api.github.com/users/lkopacz').then((content) => {

 Content.title = ‘My custom title’;

 resolve(content);

});

 }

 else {

 reject('not valid');

 }

});

promise.then(result => console.log('It worked'));

promise.catch(error => console.log('It didn’t work'));

Creating your own promises

https://api.github.com/users/lkopacz

©2018 Acquia Inc. — Confidential and Proprietary

Async/Await

- A syntax for working with promises that reads more like
synchronous code

- Async functions are functions that return a promise
- Within an async function, code execution can be paused

using the await keyword. Code execution continues with
the resolved promise.

- Async/await is not an official part of ES6 but its coming!
It can be used today using the Babel transpiler

©2018 Acquia Inc. — Confidential and Proprietary

Async/Await examples

Using Promises:
function doThingsInSequence() {

 return doThing1()

 .then((result1) => {

 return doThing2(result1);

 })

 .then((result2) => {

 return doThing3(result2);

 })

 .then((result3) => {

 return doThing4(result3);

 });

}

Using Async/Await:
async function doThingsInSequence() {

 let result1 = await doThing1();

 let result2 = await doThing2();

 let result3 = await doThing3();

 return await doThing4();

}

©2018 Acquia Inc. — Confidential and Proprietary

Async/Await examples

- The “await” keyword only works inside of a function
defined with “async”

async function getVisitorLocation() { ... }

// Will throw an exception

await getVisitorLocation()

// Will also throw an exception
function myRegularFunction() {

 let location = await getVisitorLocation();

}

©2018 Acquia Inc. — Confidential and Proprietary

Async/Await in 7 seconds
https://twitter.com/manekinekko/status/855824609299636230

https://twitter.com/manekinekko/status/855824609299636230

©2018 Acquia Inc. — Confidential and Proprietary

ES6 Modules and Classes

©2018 Acquia Inc. — Confidential and Proprietary

– At its most basic level, the class keyword in ES6 is
equivalent to a constructor function definition that
conforms to prototype-based inheritance.

– The class keyword is just a special function and
exhibits expected function behavior.

– Moving towards the object oriented model, but note that
it is primarily syntactical sugar for JavaScript's existing
prototype-based inheritance and not yet object oriented.

What is an ES6 Class

©2018 Acquia Inc. — Confidential and Proprietary

// ES5 Constructor Function
function Animal(type, name, sound){
 this.type = type;
 this.name = name;
 this.sound = sound;
}

ES5 vs. ES6 constructor syntax
// ES6 Class
class Animal {
 constructor(type, name, sound) {
 this.type = type;
 this.name = name;
 this.sound = sound;
 }
}

// Works for both ES5 and ES6!
const frog = new Animal('frog', 'George', 'ribbit');

Source: Medium Article ES6 Class vs Object.prototype

https://medium.com/@ericschwartz7/oo-javascript-es6-class-vs-object-prototype-5debfbf8296e

©2018 Acquia Inc. — Confidential and Proprietary

What is Prototypal Inheritance?
function Person(first, last, age) {

 this.name = {

 first,

 last

 };

 this.age = age;

};

Person.prototype.greeting = function() {

 console.log(`Hi! I'm ${this.name.first}.`);

};

const Lindsey = new Person('Lindsey', 'Kopacz', 28);

Lindsey.greeting(); // logs 'Hi! I’m Lindsey.' to the console

©2018 Acquia Inc. — Confidential and Proprietary

What is Prototypal Inheritance?
– All functions get initialized with a prototype object.
– By placing greeting on Person.prototype, we made it

available to all instances of Person
– In actuality, there’s no Lindsey.greeting property.

Instead, Lindsey has access to the greeting() method on
Person.prototype because it’s an instance of Person.

– If I logged “Lindsey” to the console, I would not see the
greeting in my object.

– This is commonly referred to as the prototype chain.

©2018 Acquia Inc. — Confidential and Proprietary

ES6 prototypal inheritance
– ES6 gives us the ability to create a class that inherits

properties from a parent super class.
– It uses the extends keyword.
– Let’s take our frog example, and this time we’ll create it

as a class.

Source: Medium Article ES6 Class vs Object.prototype

https://medium.com/@ericschwartz7/oo-javascript-es6-class-vs-object-prototype-5debfbf8296e

©2018 Acquia Inc. — Confidential and Proprietary

ES6 prototypal inheritance
class Frog extends Animal {

 constructor(name) {

 super('frog', name, 'ribbit');

 }

}

const george = new Frog('George');

Animal.prototype.makeSound = function() {

 console.log(`The ${this.type} goes ${this.sound}!`);

}

george.makeSound(); // Logs 'The frog goes ribbit!' to the console

©2018 Acquia Inc. — Confidential and Proprietary

– At its most basic level, modules refer to small units of
independent, reusable code.

– Modules can be imported and exported.
– Use import and export keyword to take full

advantage of modular JavaScript
– There is a problem though: importing files into

applications wasn’t built into browsers - so we need a
way to bundle the code so that we can render it.

– One Solution: Use Webpack!

What is a JavaScript Module?

©2018 Acquia Inc. — Confidential and Proprietary

– Webpack is a module bundler.
– The bundling process begins from user-defined entries.
– Entries themselves are modules and can point to other

modules through imports.
– Plays nicely with babel - which compiles ES6 code into

ES5 friendly code for browser compatibility.

What is Webpack?

©2018 Acquia Inc. — Confidential and Proprietary

– Rest Parameters
– Spread operators
– Destructuring Arrays and Objects

Other Things to Learn

©2018 Acquia Inc. — Confidential and Proprietary

Drupal Example

©2018 Acquia Inc. — Confidential and Proprietary

Resources
– MDN: Using Promises
– MDN: Using Fetch
– MDN: Template Literals
– MDN: let declaration
– MDN: const declaration
– MDN: Destructuring

Assignment
– MDN: Rest parameters
– MDN: Spread Syntax

– Medium Blog Post: ES6 Classes vs Object
Inheritance

– Medium Blog Post: ES5 functions vs. ES6
‘fat arrow’ functions

– In-depth dive on Async/Await: Truly
understanding Async/Await

– Understanding JavaScript Modules
– A Detailed Introduction to Webpack
– Using Babel and Webpack
– Prototypal Inheritance in JavaScript

ES6 Drupal Example

https://github.com/darkcody/weather-module-example

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://medium.com/@ericschwartz7/oo-javascript-es6-class-vs-object-prototype-5debfbf8296e
https://medium.com/@ericschwartz7/oo-javascript-es6-class-vs-object-prototype-5debfbf8296e
https://medium.com/@thejasonfile/es5-functions-vs-es6-fat-arrow-functions-864033baa1a
https://medium.com/@thejasonfile/es5-functions-vs-es6-fat-arrow-functions-864033baa1a
https://medium.com/@rafaelvidaurre/truly-understanding-async-await-491dd580500e
https://medium.com/@rafaelvidaurre/truly-understanding-async-await-491dd580500e
https://spring.io/understanding/javascript-modules
https://www.smashingmagazine.com/2017/02/a-detailed-introduction-to-webpack/
http://ccoenraets.github.io/es6-tutorial-data/babel-webpack/
https://medium.com/@kevincennis/prototypal-inheritance-781bccc97edb
https://github.com/darkcody/weather-module-example

