

Automated Testing with Drupal:
What Tests Should We Write?

Kevin McCulloch

Administrative Office (AO) of the US Courts/New Target

Why test?
1. To define requirements and guide implementation

2. To guard against regressions

Behavior-Driven Development
● We write acceptance tests

● We write them in a business-domain language shared

between stakeholders and developers

● They follow a "Context-Action-Outcome" structure

● They are declarative, not imperative

● Taken together, they comprise "living documentation" for the

application

For example
Scenario: Successful sign up
 New users should get a confirmation email and be greeted
 personally by the site once signed in.

 Given I have chosen to sign up
 When I sign up with valid details
 Then I should receive a confirmation email
 And I should see a personalized greeting message

[Wynne & Hellesøy, The Cucumber Book (2012), p. 6]

"Related Downloads Block" requirements
● Title and 1-4 file downloads are required

● Must allow an optional description, limited to 140 characters

● Each file should show an icon, the file name, the document type and the file size

● Content creators must be able to create one of these when creating or editing a

page

● They must be able to reuse one that was created earlier for a different page

● They must be able to upload and provide metadata for files when creating/editing

● They must be able to reuse previously-uploaded files when creating/editing

● File types limited to txt, doc, pdf

What will we use to build it?
● A bunch of contrib modules (bean, entityreference,

inline_entity_form, file_entity, media, maxlength) to define

the Drupal entity and make it editable

● Some custom code to extract the file type and size from the

file entity and add it to the markup

● Component-oriented CSS to style the block

● Positioning of the block inside our responsive panels

node_view layout

Write a test in Gherkin
Feature: Related Downloads Block
As a site visitor
I want to know what file downloads are available on a page
So that I can decide whether or not I want to download them

 Scenario: I visit the page
 Given a page with a Related Downloads Block
 When I visit that page
 Then I should see the Related Downloads Block in the
 right sidebar

The same test, using Drupal Extension step definitions
Given "page" content:
| title | url | sidebar_block_id |
| Test Page | 'test-page' | 1 |
And "sidebar block" bean:
| id | Title | File Name |
| 1 | Download the Report | 2015 Dodd Frank Report |
When I visit 'test-page'
Then I should see "Download the Report" in the sidebar title
And I should see "2015 Dodd Frank Report" in the sidebar
region

The Behat Drupal Extension: Reasons to be wary
● Behat is slow, so a lot of tests will bog down our continuous

integration process

● If we're committed to true BDD acceptance testing as a

design strategy, we'll need to write higher-level step

definitions to make less imperative tests

● If we try to use Behat to provide full regression coverage,

we're going to wind up with brittle tests that are hard to

maintain and we're still going to miss bugs

How should we use the Behat Drupal Extension?
● Sparingly

● Think of it as a "test script runner," not a BDD design tool

● Focus on areas of user interaction, like forms and AJAX

responses

● Only test page rendering ("When I visit…") if the rendering

should differ based on user conditions (roles, permissions) or

entity conditions (published/not published)

Going back to our sidebar block, what should we do?
● Skip Behat

● For the tiny bit of code we're writing ourselves, use PHPSpec

● For general regression test coverage, use a visual regression

testing tool

Continuing Conversation...
Thu 1PM: I'll be at the mentoring table to talk Behat/PHPSpec (downstairs)

Thu 2PM: Behat and Drupal for Absolute Beginners (Balcony C)

Thu 3PM: BDD Strategies for Rock-Solid Automated Testing in Drupal (Room B)

Fri Lunch: Birds-of-a-Feather session on testing (location TBD)

Fri 2PM: Ensuring Quality through Automated Visual Regression Testing (Balcony C)

How I used to write Drupal hooks
/**
 * Implements hook_something().
 */
function mymodule_something($input_from_drupal) {
 if ($input_from_drupal['foo'] == 'bar') {
 $input_from_drupal['foo'] = 'baz';
 }
 return $input_from_drupal;
}

How I write them so that I can run PHPSpec
use Drupal\mymodule\MyProcessor;

/**
 * Implements hook_something().
 */
function mymodule_something($input_from_drupal) {
 $processor = new MyProcessor();

 return $processor->doYourThing($input_from_drupal);
}

My processing object
namespace Drupal\mymodule;

class MyProcessor() {
 public function doYourThing($input_from_drupal) {
 if ($input_from_drupal['foo'] == 'bar') {
 $input_from_drupal['foo'] = 'baz';
 }
 return $input_from_drupal;
 }
}

My PHPSpec test
namespace spec\Drupal\mymodule;
class MyProcessorSpec extends PhpSpec\ObjectBehavior {
 public function it_replaces_bar_with_baz() {
 $this->doYourThing(array('foo' => 'bar'))
 ->shouldReturn(array('foo' => 'baz'));
 }
 public function it_leaves_other_kinds_of_foo_alone() {
 $this->doYourThing(array('foo' => 'anything else'))
 ->shouldReturn(array('foo' => 'anything else'));
 }
}

